Uniqueness of limit models in classes with amalgamation

نویسندگان

  • Rami P. Grossberg
  • Monica Van Dieren
  • Andrés Villaveces
چکیده

We prove: Theorem 0.1 (Main Theorem). Let K be an AEC and μ > LS(K). Suppose K satisfies the disjoint amalgamation property for models of cardinality μ. If K is μ-Galois-stable, does not have long splitting chains, and satisfies locality of splitting, then any two (μ, σl)-limits over M for (l ∈ {1, 2}) are isomorphic over M . This result extends results of Shelah from [Sh 394], [Sh 576], [Sh 600], Kolman and Shelah in [KoSh] and Shelah & Villaveces from [ShVi]. Our uniqueness theorem was used by Grossberg and VanDieren to prove a case of Shelah’s categoricity conjecture for tame AEC in [GrVa2].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Categoricity in Abstract Elementary Classes with No Maximal Models

The results in this paper are in a context of abstract elementary classes identified by Shelah and Villaveces in which the amalgamation property is not assumed. The long-term goal is to solve Shelah’s Categoricity Conjecture in this context. Here we tackle a problem of Shelah and Villaveces by proving that in their context, the uniqueness of limit models follows from categoricity under the assu...

متن کامل

Categoricity in abstract elementary classes with no maximal models

The results in this paper are in a context of abstract elementary classes identified by Shelah and Villaveces in which the amalgamation property is not assumed. The long-term goal is to solve Shelah’s Categoricity Conjecture in this context. Here we tackle a problem of Shelah and Villaveces by proving that in their context, the uniqueness of limit models follows from categoricity under the assu...

متن کامل

Limit Models in Classes with Amalgamation

In abstract elementary classes limit models are sometimes the appropriate substitute for saturated models. For Galois-stable abstract elementary classes which satisfy the amalgamation property, we prove under the assumption that there is a mildly behaved dependence relation, that for any model M , any two limit models over M of the same cardinality are isomorphic. This is useful in dealing with...

متن کامل

On the Structure of Categorical Abstract Elementary Classes with Amalgamation

For K an abstract elementary class with amalgamation and no maximal models, we show that categoricity in a highenough cardinal implies structural properties such as the uniqueness of limit models and the existence of good frames. This improves several classical results of Shelah. Theorem 0.1. Let μ ≥ LS(K). If K is categorical in a λ ≥ i(2μ)+ , then: (1) Whenever M0,M1,M2 ∈ Kμ are such that M1 ...

متن کامل

1 4 Se p 20 05 EXCELLENT ABSTRACT ELEMENTARY CLASSES ARE TAME

The assumption that an AEC is tame is a powerful assumption permitting development of stability theory for AECs with the amalgamation property. Lately several upward categoricity theorems were discovered where tameness replaces strong set-theoretic assumptions. We present in this article two sufficient conditions for tameness, both in form of strong amalgamation properties that occur in nature....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Log. Q.

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2016